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The properties of the Bag are 

Bj~=O,k>j ;  B~j=2J; B ~ 0 = 2 , j # 0 ;  

jon 

8j,j_,~= z (Jr") ~: (u)en,, t 

t=0 n=0 

Table 2 shows some Bje. 

(32) 

] k  0 
0 1 
1 2 2 
2 2 6 4 
3 2 10 16 
4 2 14 36 
5 2 18 64 
6 2 22 100 

Table 2. The elements Bjk 

1 2 3 4 

8 
40 16 

112 96 32 
240 320 224 

5 6 

64 . 

Equation (32) permits a recursive calculation of 
further Big. 

The author is very grateful to Professor G. V. Schulz 
for his kind interest in the present work. Special thanks 
are due to Professor P. Beckmann and Dr R. G. Kirste 
for helpful discussions. 
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The Structure of Short-Range Ordered Alloys. I. Clustering of Ordered Cells* 
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A statistical theory for the X-ray diffuse scattering from disordered binary alloys is developed. It con- 
veys the probability of finding ordered cells as a function of the distance from a given cell. These prob- 
abilities are related to the Warren short-range-order parameters. It is also shown that if part of the 
volume of the crystal is completely disordered, then its size can be calculated from the usual diffuse- 
scattering measurements. Comparison with experiment shows clustering of ordered cells in disordered 
CuAu. For alloys which obey the Ornstein-Zernike pair correlation function just above To, such as 
B-brass, there is a clustering of ordered cells, but not an anti-phase domain structure. 

Introduction 

Binary alloys which undergo an order-disorder transi- 
tion exhibit short-range order above the transition 
temperature. The actual substructures of such alloys 
influence many of their physical properties. Conse- 
quently the exact atomic correlation of short-range- 
ordered alloys has been a subject for many investiga- 
tions (Gehlen & Cohen, 1965), but the situation is far 
from being clear. 

X-ray diffuse scattering studies from short-range- 
ordered alloys convey the probabilities for the ex- 
istence of a given type of atom in each shell of neigh- 

* This work represents part of the D.Sc. dissertation of 
M. Greenholz. 

bours (Warren & Averbach, 1953). These are statistical 
results and may be compatible with different models of 
solid solution, e.g. with a liquid-like character of the 
distribution of each kind of neighbour or with a model 
of nucleation of the long-range-ordered phase, i.e. on 
the assumption that the alloy contains ordered nuclei 
in an otherwise disordered matrix. 

On the other hand, in the parallel case of clustering in 
pre-precipitation alloys, it has been known for some 
time that these alloys contain zones of one kind of 
atom, such as the well-known Guinier-Preston zones 
in AI-Zn, etc. (Guinier, 1959). 

We develop here a new diffraction theory for the 
diffuse scattering of X-rays from short-range-ordered 
alloys. This theory converts the treatment of  short- 
range order between atoms to a treatment of 'local 
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order' between ordered cells. This is a statistical theory 
which may show whether in a given alloy there is a 
clustering of ordered cells or some kind of 'short- 
range order' between the ordered cells. In extreme cases 
it may show if there is long-range order between anti- 
phase domains. In an accompanying paper (Greenholz 
& Kidron, 1970) we develop a non-statistical theory of 
diffraction for the case of alloys containing ordered 
zones in a disordered matrix. 

As a relatively simple but important case we take an 
equiatomic binary alloy like Cu-Zn, where there can 
be only two kinds of ordered cell that are in anti-phase 
relative to each other, and write down the necessary 
diffraction equations. The crystal is taken as being 
made up partly of ordered unit cells and partly of 
disordered cells. 

disordered volume, (a) denotes unit cells which are 
in-phase with the cell at the origin, and (b) denotes the 
same for anti-phase cells. 

Taking 

Fr= FI +(Fr -  F,) , (4) 

/1 is evaluated as follows: 

11 = ~ ~ lEt] 2 exp [2nik. ( R r ' -  Rr)] 
r '  r 

r '  r 

r* r 

+E;E; 
r t ?. 

[Fal 2 exp [2nik. (Rr ' -Rr) ]  

( F r ' - F  0 ( F r - F , )  exp [2nik. ( R r ' - R r ) ]  

F~. (Fr-F~) exp [2nik. ( R r ' - R r ) ] .  

Theory of d i f f r a c t i o n  

The structure factor of an ordered unit cell can be 
written quite generally as F =  F1 + F2. F1 is the structure 
factor of the 'average' unit cell, in which each atom is 
an average atom (i.e. made up of half Cu and half Zn 
in CuZn). F2 is the order-dependent part of the struc- 
ture factor of the cell. 

When there are two types of ordered cells in anti- 
phase relative to each other, as in our case, the struc- 
ture factor of each ordered unit cell is either 

Fa=Flq-F2 or Fb=F1-F2 (1) 

depending on whether the unit cell is in phase with the 
unit cell at the origin or in anti-phase with it. We also 
designate by Fr the structure factor of the unit cells in 
the disordered volume. Fr is different from F1 because 
in the disordered volume the two types of atom are 
distributed at random whereas in a cell with the struc- 
ture factor F~ we have the same average atom at each 
atomic site. 

The intensity diffracted by the whole crystal will be 
given by 

I= ~ ~ FmFn exp [2nik. (Rm-  Rn)] (2) 
~l n 

where the double sum is over the whole crystal and 
Fro, Fn are either Fr or Fa or Fb. 

Writing down the different sums in (2) explicitly" 

where 
I=Ii  + I2+ Ia+ I4 

I,=EE 
?" r 

r a 

1 3 = E 2  
r b 

a b 

tFrl g exp [2nik. (Rr ' -Rr) ]  

FrFa exp [2nik. (Rr-Ra)]  

FrFb exp [2nik. (Rr-Rb)]  

FaF0 exp [2nik. (Ra-R0) ] .  (3) 

In the sums, the subscript (r) denotes unit cells in the 

The first term of /1  is part of the intensity of the 
fundamental lines, and denoted by m) The 

* f u n d "  

second term of I1 gives the well-known Laue monoto- 
nic scattering, but only for the disordered volume of 
the crystal: 

(dis)_ ~ ~ (Fr" El) (Fr-  El) L M - -  
r t r 

x exp [2nik. (Rr' - Rr)] 

= ~  F 2 - -  I F 1 [  2 

r 

=nr[(mAf~ + mBf~)-(m~fA + m j ~ )  2 

-= rtrm Am B(f  A -- f B) 2 , 

where nr is the number of atoms in the disordered 
volume, fa, fB are the scattering factors of the two 
types of atoms in the alloy, and mA, mB are the atomic 
fraction of the two types of atoms. A bar over a quan- 
tity denotes its mean value. 

The third term in 11 is equal to zero because Fr = F~. 
Summing the three parts of 11 it is seen that 

I1 - l ( l )  + i ~ } )  - - f u . ~  • ( 5 )  

The term /2 in (3) is evaluated as follows, using (1) 
and (4): 

/2 = ~ ~, FrFa exp [2nik. ( R r -  Ra)] 
r a 

= ~] ~ Ifll 2 exp [2nik. (Rr-Ra)] 
r a 

+ Z ~ F1Fz exp [2nik. (Rr-Ra) l  
r a 

+ ~, ~, (Fr-FI)FI exp [2nik. (Rr -Ra) l  
r a 

+ Z ~. (Fr-F1)F2 exp [2nik. ( R r - R a ) ] .  
r a 

The first term in/2 is part of the intensity of the funda- 
mental lines and will be denoted by i(2) The second * f u n d "  

term is zero except under the fundamental lines, 
which do not interest us here. We include it in ~(2) I f u n d .  

The third term and the fourth term of/2 are also equal 
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to zero because Fr = F~. We have then 

2--/(2) 
- -  ~ f u n d  • 

I3 is evaluated similarly, and consequently 

3 - -  1 ( 3 )  
- -  1 f u n d  • 

Now we evaluate 

I4= ~, ~ FaF~ exp [2nik. (Ra-R~) ] .  
a b 

(6) 

(7) 

For this purpose we denote by Xa the percentage of 
(a)-type cells among all the ordered cells and by Xb 
the same for (b)-type cells, so that Xa+ Xb= 1. If Nc 
is the number of ordered cells in the crystal, then the 
number of aa pairs in 14 is NcX~ and for them Ra-Rb 
=0.  Similarly, the number of bb pairs in 14 is NcXb, 
and for them Ra-Ro =0.  Consequently 

14 = Nc(X,F~ + XoF~) 

+ ~ ~. FaFb exp [2nik. ( R a -  Rb)]. (8) 
a # b  

The total intensity I will be given by" 

I = 1 1 - ] - I 2 + 1 3 - F / 4  

which by the relations (5), (6), (7) and (8) will be 

I =  I ( 1 )  - 1 - 1 ( 2 )  _a_ 1(31 ~ 1 ~ )  
~ f u n d  ~ f u n d  t f u n d  

+ Nc(XaF2a + XbFZo) 

+ ~ ~ FaFb exp [2nik. (Ra -Rb) ] .  
a # b  

Now, the diffuse scattering alone is 

ID=I--Ifund , 

where /fund is the intensity of the fundamental lines. 
But 

/ f u n d  - -  1 ( 1 )  _ L  1 ( 2 )  _~_ I ( 3 )  _L  I ( 4 )  
- -  ~ f u n d  t ~ f u n d  Z f u n d  ~ ~ f u n d  

where 

(4) = Nc(XaFa + XbFb) 2 f u n d  

+ ~ ~ (XaFa + XbF#) 2 exp [2nik. ( R a -  Rb)] 
a C b  

is part of the intensity of the fundamental lines and is 
included in/4. Accordingly 

ID= I-- If~nd= I~ t  ) + Uc(X~rz~ + XoF~) 

+ ~ ~ FaFb exp [2nik. ( R a -  Rb)] 
a # b  

-- Nc(XaFa + XbFb) 2 

- ~, ~ (X,F, + XoFo) 2 exp [2nik. ( a s -  Ro)]. 
a # b  

ID --- " LM1(diO + NcXaXb(Fa - F o )  2 

+ ~ ~ FaF~ exp [2nik. (Ra-Ro)]  
a # b  

- ~ ~ (XaFa + XbFb) 2 exp [2nik. ( R a -  Rb)]. 
a # b  

(9) 

We now define the parameters Amn = 1 -  P~ where 
Xa ' 

ab Pro, is the probability of finding an (a)-type cell at the 
distance (Rm-Rn)  from a (b)-type cell at the origin. 

At this stage we can use exactly the same type of 
calculation as given by Cowley (1950) for the normal 
short range order parameters. The result is that equa- 
tion (9) takes the general form: 

ID= I~ff + ~ ~ XaXb(Fa- rb)ZAmn 
a b 

x exp [2nik. (Rm-Rn)]  

or the particular form for an f.c.c, or b.c.c, crystal, 

11) =/(dis) + NcgaXb( Fa - Fb) z L M  

× E E E A,,,,,, 
l m n 

x exp [2ni(2h11+ 2h2m + 2h3n)]. (10) 

The parameters Alton are defined here by 

Azmn = 1 -  -p~-~ (11) Xa 

where pt,,,,a° is the probability of finding an (a)-type cell 
at the lattice site lal + ma2 + na3 after first having found 
a (b)-type cell at the origin; al, a2,a3 are the crystallo- 
graphic vectors. 

According to (1), equation (10) takes the form 

[ O  = I(La# ) + 4NcXaXbF z 

x ~ ~ ~ Azmn exp [2ni(Zlhl+ 2ham + 2h3n)] 
1 m n 

paa 

0"60 

0"55 

0"50 

a 2a 3a 

Fig. 1. The probability of finding an ordered cell, in-phase with 
the cell at the origin, as a function of the distance from the 
origin, for fl-brass at T= Tc + 75 °. a is the lattice parameter. 
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or more explicitly 

Io = nrm Am B( f  A -- f B) z 

+4N~XaXt, F2z ~ ~ ~ A,mn 
l m n 

× exp [2ni(2h~l + 2h2m + 2h3n)]. (12) 

Equation (12) can be written as 

Io nr 
- .  

nmAm~(fA-- fB)  2 n 

4NcXaXbF z 
+ nmAmB(fA--fB) 2 ~ ~m ~n Aim" 
x exp [2rci(2hxl+ 2h2m + 2h3n)] (13) 

where n is the number of atoms in the irradiated 
volume of the crystal. The right side of this equation 

4NcXaXbF 2 
gives a modulation of the quantity nmAm2(fA--fB) z " 

There is also an unmodulated part, i.e. nr ,  which can 
n 

be calculated. From nr one can also calculate Nc 
n H 

Putting the values of n_r and Nc back in (13)one cal- 
n n 

culates the parameters Azmn from the Fourier trans- 
form of the left side of this equation. 

If in a disordered alloy the Warren short-range- 
order parameters O~zmn (Cowley, 1950) have already 
been calculated from the experimental intensity, one 

paa 

1"0 

0"9 

0"8 

0"7 

0"6~ 

0"5 

0'4- 

0 

~% -o.-o-o- QUENCHED 
x FROM 500°C 

\ 
\ -a.a-.a- AT 425°C 

- \ -x-.x--x- AT 525°C 
\ 

\ 
\ 

\ 
\ 

N 
\ 

\ 

O ~  

. ~ .  ~ r l .  ~ ' 0  -...,,. " " "  o..--- 

P 

I _ ,, I I I 
0"5a a 1"5a 2a 

R(A °) 

Fig.2.  The  probabi l i ty  of  finding an ordered cell, in-phase 
with the cell at the origin, as a funct ion of  the distance f rom 
the origin, for C u - A u  above  To. a is the lattice parameter .  

can derive the parameters Atmn directly from them in 
the following way: 

The Fourier coefficients of the transform of the left 
side of the equation (13) are O~lmn by definition. 

On the right side of (13) we have a constant factor 

4NeXaXb Besides this factor there are two functions. 
nmAmB 

The first one is F~ We designate the Fourier 
(fA --fB) 2" 

coefficients of this function by Ft'm'n'. The second 
function is the triple sum whose Fourier coefficients 
are Alton. The Fourier coefficients of the product of 
these two functions will be given by the convolution 
theorem by ~ Fl'm'n'Almn-l 'm'n' .  We will then have 

I ' m ' n "  

O~m __ 4NcXaXo ~ ~ ~ Fz'm'n'. Alton-I'm'n" (14) 
nmamb r m' n' 

where 

, nr  /?r 
%00=%00 - = 1 - • (%00 = 1 by definition) 

n /7 

and 

O~Imn = ~Imn for (lmn) # (000) . 

Now Fl'm'n" is given from the structure of the ordered 
alloy and is usually known. Then from ~tm. we can 

p,aB 
calculate Alton, which gives ~ according to (11). 

The treatment given above can be extended to other 
types of lattices, and to the cases where more than two 
kinds of anti-phase domain occur. Also in the most 
frequent f.c.c, lattices the ordered phase is usually f.c. 
tetragonal, and the c axis may be (at least in principle) 
along the different crystallographic axes. But the OQmn 
given in the literature are usually average values over 
all orientations, and for them equation (14) can be used 
as it is. 

Comparison with experiment 

The theory has been applied to a 50 at.% CuZn alloy. 
For this alloy there are critical neutron scattering 
measurements (Walker & Keating, 1963; Als-Nielsen 
& Dietrich, 1967) giving the pair correlation function, 
p(r), for occupation of lattice sites. It is shown that 
Ip(r)loc[exp(-Kxr)]/r~+', i.e. p(r) is given by the 
Ornstein-Zernike pair correlation function (Elliott & 
Marshall, 1958), except for the small correction r / = ~ .  
The measurements were performed just above Te - the 
critical temperature for ordering, and it is shown that 
K1 is linear with ( T - T e ) / T c .  

The parameters Azmn were calculated from the 
experimental values of p(r) using equation (14). In 
Fig. 1 we give p~,,,,- 1 - ,,b " - PZm,, i.e. the probability of 
finding an ordered cell in phase with the cell at the 
origin as a function of the distance from the origin. 
This plot is similar to the plots of the probability of 
finding like atoms in the pre-precipitation stage of 
several binary alloys (Guinier, 1959). We have then a 
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clustering of ordered cells in ]?-brass above To. A cal- 
culation of %00 yielded e '=0.66,  i.e. about -} of the 
crystal is in ordered form in this particular alloy 
( T =  Tc+75°). 

From Fig. 1 we see that the state of order (or rather 
'disorder') in fl-brass above Tc cannot be explained by 
assuming the existence of anti-phase domains, be- 
cause in this case pTan should oscillate with r and the 
resulting Ip(r)l. r (through OQmn) would not decrease 
exponentially. 

This discussion applies also to any equiatomic alloy 
which obeys the Ornstein-Zernike pair correlation 
function. Such an alloy will exhibit clustering of 
ordered cells, but not an anti-phase domain structure, 
above the critical temperature. 

We took the experimental azmn given in the literature 
for CuAu (Roberts, 1954). From these values we cal- 
culated Azmn, using equations (14) and assuming 
nr = O. These give ,b P~mn from the relation (11). In Fig.2 
we give Ptmn- 1 ,,b ,a _ --P~mn, i.e. the probability of finding an 
ordered cell in phase with the cell at the origin as a 
function of the distance from the origin. Curve (1) is 
for the specimen which was quenched to room temper- 
ature from 500 °C. We see that up to a distance of more 
than two unit cells p ~  is higher than the average value 
P. The actual model of the solid solution may then 
well be that of ordered zones (with a statistical distribu- 
tion of their sizes) in an otherwise disordered alloy, 
i.e. one of a pre-precipitation of the ordered phase. 

Curves (2) and (3) in Fig. 2 are from the results of 
measurements at 425 °C and 525 °C respectively. They 
show a clustering of like cells which as expected is 
higher at the lower temperature. But the fact that the 
first point (at r = a  A) is lower than the second one 
(at r = ]/2a A.) is hard to explain. However, the diffuse 
scattering at high temperatures contains an appreciable 
amount of temperature diffuse scattering which is hard 
to calculate independently. This may also account for 

the fact that for the specimen measured at 425 °C the 
O~mn that Roberts found are smaller than those that 
he found for the specimen quenched from 500 °C. 

To sum up, we have clustering of ordered cells in the 
CuAu system above the transition temperature for 
ordering. In order to check if this is compatible with a 
model of ordered zones in a disordered matrix, we 
must write down the equation of scattering for such. a 
model and compare the results with the experimental 
scattering curve. This has been done (Greenholz & 
Kidron, 1970). We find that the magnitude of ezmn and 
their ratios to one another are such that they fit the 
model of zones. The sizes of the ordered zones have a 
distribution, but the mean radius is about 1.5 unit cells, 
and this is in accordance with the results of the present 
work. 

The authors wish to express their gratitude to Profes- 
sor H. Lipson, Dr D. T. Keating, Professor E. S. 
Machlin and Professor Ben Post for valuable discus- 
sions. 
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